Traffic-related air pollution near roadways: Discerning local impacts from background

N. Hilker1, J. M. Wang2, C.-H. Jeong1, R. M. Healy1, U. Sofowote1, J. Debouz1, Y. Su1, M. Noble1, A. Munter1, G. Doerksen1, L. White1, C. Audette1, D. Hero1, J. R. Brook1, G. J. Evans1

1. Southern Ontario Centre for Atmospheric Aerosol Research, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, MSS 3E5, Canada
2. Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment Conservation and Parks, Etobicoke, ON, M3P 3V6, Canada
3. Air Quality Policy and Management Division, Metro Vancouver, Burnaby, BC, V5H 0C6, Canada
4. Air Quality Research Division, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada

Conclusion

- Local pollutant concentrations were up to six times higher when the monitoring station was directly downwind of the road, compared with the upwind case.
- Pollutant concentrations decreased by a factor of four with increasing wind speeds from 4 to 40 km h\(^{-1}\) (\(\sqrt{c} = 0.5 - 0.6\)).
- Method 3 (baseline inference) was shown to reliably predict background concentrations (except PM\(_{2.5}\)), whereas downwind/upwind analysis over-predicted the influence of traffic.

DOI: 10.5194/amt-12-5247-2019 nathan.hilker@mail.utoronto.ca