Characteristics of Tailpipe and Non-Tailpipe Particulate Matter in Toronto

Cheol H. Jeong1, Nathaniel Hilker1, Jon M. Wang1,2, Alison Traub1, Rob Healy1, Jerzy Debozs2, Uwayemi Sofowote3, Yushan Su2, Michael Noble2, Tony Munoz2, Ewa Dabek-Zlotorzynska3, Valbona Celo3, Luc White3, Dennis Herod3, Greg Evans1

1. Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), University of Toronto, Toronto, Ontario
2. Ontario Ministry of the Environment, Conservation, and Parks, Toronto, Ontario
3. Environment and Climate Change Canada, Ottawa, Ontario

BACKGROUND
- Twenty-four-hour integrated filter-based chemical speciation data of PM2.5 collected over the last 14 years in Toronto were utilized to
 - Identify the long-term trends of PM2.5 sources in the metropolitan area
 - Investigate factors driving change in the trends
 - Assess the source-specific health effects of PM2.5
- Hourly PM2.5 chemical speciation data simultaneously measured at multiple near-road locations were examined to
 - Estimate the contribution of local traffic-related sources on PM2.5
 - Characterize decay gradients of traffic-related PM2.5 under cold winter temperatures

METHODOLOGY

Site Description
- Downtown Toronto (NR-TOR-2)
 - 24-hour integrated PM2.5 chemical speciation data: March 1, 2004 - April 4, 2017
 - Hourly PM2.5 chemical speciation data: May 10 - Aug. 31, 2016
 - Traffic density: 15 m from the 4-lane arterial road, ~16,000 vehicles/day
- Highway 401 (NR-TOR-1)
 - Hourly PM2.5 chemical speciation data: May 10 - Aug. 31, 2016
 - Traffic density: 10 m from the edge of highway 401 ~410,000 vehicles/day
 - Wintertime hourly PM2.5 chemical speciation data: Feb 6 - Feb 27, 2017 (10 m vs. 150 m from highway 401)

Instrumentation
- 24-hr integrated PM2.5 filters collected by two samplers were analyzed by Ion Chromatography (IC), energy dispersive x-ray fluorescence (ED-XRF), acid digestion Inductively-Coupled Plasma Mass Spectrometry (ICPMS), and thermal optical reflectance (TOR)
- Hourly organics, sulphate, nitrate, and ammonium by Aerosol Chemical Speciation Monitor (ACSM, Aerodyne)
- Hourly trace elements by Xact Metals Monitor (Xact 625, Cooper Environ)
- Real-time gas- and particle-phase air pollutants: NOx, NOy, CO, SOx, Ultrafine Particles (UPP, FPMPS), Black Carbon (BC, AE33), PM2.5 (SHARP)
- Met data: Wind Speed, Wind Direction, Temperature, Relative Humidity

Data Analysis
- Receptor modeling: Positive Matrix Factorization (PMF, EPA PMF 5)
- Trend Analysis: Marine-Kendall test and Sen's slope
- Wind sector analysis
- Oxidative Potential (OP); Ascorbate Acid (AA) assay
 - Intrinsic PM redox activity: AA depletion rate normalized by PM mass

LONG-TERM TRENDS OF PM2.5 SOURCES
- Annual concentrations of PM2.5 and reconstructed chemical composition and annual, monthly and day-of-the-week patterns of NO2, SO2, UF and UP
 - The annual concentrations of PM2.5 in Toronto decreased by 34% between 2004 and 2016 with the decreases of local and regional air pollutants.

DECAY GRADIENTS IN WINTER
- Decay gradients of Tailpipe and Non-Tailpipe PM2.5 during downwind, upwind, and air stagnation conditions at 10 m and 150 m from highway 401
 - A very sharp decay gradient was observed for non-tailpipe PM2.5.
 - Winter stagnant air conditions further widened this traffic-influenced area to the point where concentrations were similar 10 m and 150 m away from the road, suggesting that the influence of the traffic emissions extended far beyond 150 m.

SUMMARY
- Improvements to vehicle technologies have led to an overall reduction in local tailpipe PM2.5 emissions with the reduction of traffic-related air pollutants.
- Non-tailpipe emissions mainly from brake wear and resuspension of road dust are emerging and contributing more PM2.5 than primary tailpipe emissions.
- Non-tailpipe emissions contributed a substantial fraction of redox-active trace metals.
- Traffic-related PM2.5 showed different degrees of inhomogeneity across the sites in Toronto. Tailpipe and non-tailpipe vehicle emissions are producing, as observed, 15% to 28% (29% to 49% during morning rush hour) of the PM2.5 observed near roads.
- Winter stagnant air can widen the near-road influenced area, and thus the extent of human exposure to related pollutants can vary with meteorology.
- Further studies are recommended to understand the implication of heavier vehicles adversely affecting non-tailpipe emissions and the relationship between exposure to non-tailpipe emissions and health outcomes.
- The effectiveness of mitigation strategies, such as road sweeping, trapping brake particles or regulations for the composition of brake pads, needs to be explored.

ACKNOWLEDGEMENTS

The work was supported by Environment and Climate Change Canada and the Canada Foundation for Innovation.

Contact: ch.jeong@utoronto.ca
Near-road Measurements

- Air pollutant measurements near roadways are heavily influenced by traffic.
- Quantifying the amount traffic contributes to these concentrations is challenging.

Background Subtraction Methods

Method 1: Site Differences

- Near-road pollutant concentrations occurring as a result of traffic were estimated based on differences between near-road and background station pairs (i.e., NR-VAN and BG-VAN, NR-TOR-1 and BG-TOR-1, and NR-TOR-2 and BG-TOR-2).

Method 2: Downwind/Upwind Differences

- For each near-road station, excess pollutant concentrations were determined based on differences between measurements taken downwind and upwind of the road.

Method 3: Baseline Inference

- Excess concentrations at each near-road station were approximated based on baseline inference using time-series analysis. This inferred baseline is intended to reasonably approximate concentrations measured at nearby background stations.

Effect of Meteorology on Local Concentrations

- Local traffic-related concentrations, as determined using Method 3, were compared with meteorological data from NR-TOR-1 and NR-VAN.
- Concentrations were normalized with respect to mean values for comparability amongst all pollutants.

Conclusions

- Local pollutant concentrations were up to six times higher when the monitoring station was directly downwind of the road, compared with the upwind case.
- Pollutant concentrations decreased by a factor of four with increasing wind speeds from 4 to 40 km hr⁻¹ (ε₂ = 0.5–0.6).
- Method 3 (baseline inference) was shown to reliably predict background concentrations (except PM₂.₅), whereas downwind/upwind analysis over-predicted the influence of traffic.

DOI: 10.5194/amt-12-5247-2019

nathan.hiller@mail.utoronto.ca